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ABSTRACT 

 

This paper described the capability of acoustic emission (AE) technique in monitoring 

the fatigue damage level using unsupervised clustering technique. As fatigue damage is 

being a major contributing factor to component failure, it is essential to evaluate the level 

of damage caused by fatigue load in order to prevent the catastrophic failure of the 

structure. It is a concern in this study to differentiate the AE signals according to the 

fatigue damage stages by implementing an unsupervised clustering technique. In this 

study, the AE signals were collected on specimens made of medium carbon steel SAE 

1045 that underwent the axial fatigue testing. The test was run at three loading values of 

600, 640 and 680 MPa. The pattern behaviour of AE signals was recorded using a 

piezoelectric sensor in a form of time domain history signal.  Later, the AE signals 

collected were analysed and clustered using K-means technique.  Five clusters of K1, K2, 

K3, K4, and K5 have been found for the specimens subjected to stress value of 600-680 

MPa. The optimum numbers of K clusters were determined using the smallest objective 

function in their group which ranges between 2.6 to 3.0. This pilot investigation shows 

that it may be useful to estimate the remaining life for a component before it fails.  

 

Keywords: AE; clustering; fatigue; K-means and medium carbon steel.  

 

INTRODUCTION 

 

Acoustic emission (AE) technique has a capability of detecting high frequency wave 

ranging of 20 KHz-2 MHz deep inside the material. At very high frequency, AE can detect 

the incipient damage that just happens in the material [1] . AE technique is part of non-

destructive technique (NDT) which can evaluate the damage without disturbing the 

machine operation. The progression of fatigue crack in aluminium specimen monitored 

using AE shows that this technique is suitable for monitoring the crack growth in the 

material [2].  AE offers promising NDT technique as it can offer on-line inspection of the 

running structures or components which cannot be offered by other methods. Therefore, 

the application of this technique is quite popular to detect and monitor failures on steel 

bridges, pressure vessel, pipelines, boiler etc [3].  
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The engineering components are exposed to fatigue failure that occurs suddenly 

before maintenance could be carried out. Even at very low stress, the cyclic load will 

contribute the fatigue to occur and break the component without any warning. Many 

research has been conduct to detect, monitor, as well as to predict the fatigue life of 

mechanical structures or components [4].  It covers all types of materials such as steel, 

aluminium, composites, as well as biomaterial metallic [5]. Apart of many techniques 

such as locating the strain gauge at the expected crack sources, dye penetrating, and 

ultrasonic and the finite element analysis [6, 7], the AE technique also has been widely 

used in evaluating the fatigue damage mechanism.  It can locate the crack location, 

monitor the crack propagation, and come up with a solution to predict the fatigue life [8]. 

Comparing to other non-destructive testing technoques (NDT), AE is favourable as it can 

detect in-situ damage and the monitoring can be done while the component or structure 

is running.  Recently, a group of researchers used AE signal to evaluate the fracture 

resistance in an endodontically treated tooth and short glass fibre reinforced (SGFR) 

under the fatigue testing by AE monitoring technique [9]. Similarly, a group of 

researchers that found the AE technique can predict the remaining life of composite 

structures under fatigue loading [10]. In addition, other novel work has been carried out 

to detect the fatigue crack propagation on the reinforced masonry walls [11], as well as 

to monitor the fatigue damage for carbon fibre reinforced concrete [12]. As for steel, AE 

technique has been used to characterise the fatigue crack growth of RAFM steel latest in 

2016 [13]. Other than that, the application of AE has been also applied to the aluminium 

alloys [2], various types of composites [14] and bio-medical implants [15].   

As AE signals are huge noisy data produced during the fatigue test, it is essential 

to differentiate between the real data or the noise coming from the machine or 

environment during the test. Although the chances to eliminate the noise have been done 

during setting up the threshold value, there might be a slim chance that the unwanted 

noise still encounter in the signals collected during the test by the specimen slippage, 

hydraulic error, or machine start/stop. To minimise the problem, the pattern recognition 

approach such as clustering (unsupervised classification) and classification (supervised) 

method can be used to classify and group the useful AE data to whatever basic parameter 

desired.  For supervised (classification), either the parametric model or model of the data 

that is known while in clustering (unsupervised classification), the labels of input pattern 

are unknown and the classifier needs to determine the cluster structure. In AE application, 

this technique is widely used to monitor and group the damage level of a component. 

Principle component analysis (PCA), K-means, and artificial neural network (ANN) are 

the most favourable techniques used in clustering and classification the AE data [16]. 

Unsupervised pattern recognition using Mahalanobis-like distance method was used to 

successfully classify the damage level of the polymer-composite that experiences the 

fatigue test through the AE technique [17]. In other research, the unsupervised 

classification i.e., Principle component analysis (PCA) and K-means has been used to 

identify the source mechanism involved at high temperature of ceramic matric composites 

(CMC) during the fatigue test [18]. Besides that, the unsupervised AE data clustering 

using PCA and fuzzy c-means clustering has been used to tackle out the analysis of 

damage mechanisms in glass/polyester composites. The researchers conclude that this 

method provides an effective tool to discriminate the damage mechanism of the material 

[19]. 

   From the previous study, it seems that composite is the favourable materials that 

have been chosen to be analysed via pattern recognition methods.  Therefore, the present 

study uses the unsupervised clustering method in analysing the AE data. The aim of this 
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work is to enhance the capability of the method to steel component that is used widely in 

automobile as well as pipes industries.  The group or clusters that will contribute through 

the AE data, taken from the cyclic fatigue test, will establish the baseline data for 

preventive maintenance to avoid sudden breakdown while the component in operation.  

The results obtained may guide to a comprehensive research to predict the fatigue life of 

the material. 

  

METHODS AND MATERIALS 

 

K-means clustering method 

The K-means technique was used to cluster and group the signals to determine the damage 

severity of the specimen. In K-means, the continuous reassignment of objects is 

performed until different cluster (K cluster) is determined.  The distance within the cluster 

is minimised and the centroid of every cluster is determined.  Using the iterative 

algorithm, the minimum sum of point-to-centroid distances over the entire K cluster was 

determined [20].  Eq. (1) shows the formula for the objective functions for K-means: 

 
( ) 2

1

jk c

h i jj i
J x c


                                               (1)  

 

where 
2( )j

i jx c  is the distance between point 
( )j

ix and the means of point jc . 

K-means has been used widely in assessing and monitoring many types of 

mechanical failure in components as well as mechanical structures. K-means has been 

used by Moevus et al. [21] to differentiate the damage mechanism of matrix cracking of 

SiCf/[Si-B-C] composites that exhibit different tensile behaviours using AE signals. 

Other research using K-means technique to identify the fretting fatigue crack propagation 

also has been using the AE approach [22]. 

 

Experimental Set up 

The AE signals were collected during the axial fatigue test. Both tensile and fatigue tests 

were run according to respective ASTM standards that will be mentioned in next section. 

Basic parameters of AE such as rise time and amplitude were extracted from the signals 

and used as the input parameter for the clustering method (Figure 1).   

 

Specimen Preparation 

The material used in this research is the SAE 1045 medium carbon steel. Table 1 shows 

the typical chemical composition of this material [23]. It has been chosen due to its 

availability and a wide range of application such as automotive, power plants, and piping 

system. Due to its high carbon content, this type of steel also can be employed as a 

replacement for tool steels in structural application [24].  The material has been cut to a 

flat specimen according to ASTM E8 standard, as the geometry shown in Figure 2 (a and 

b).  Following the ASTM E3-11 standard, the specimens has been polished using several 

grades (400, 800, 1000, 1200, and 2000) of silicon carbide abrasives papers to produce 

the mirror-like surface finish before the specimens undergo both the tensile and cyclic 

fatigue test as shows in Figure 3 (c and d). This aims to ensure that the surface scales left 

as well as the residual stress caused by the machining process are removed [25]. 
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Figure 1. Process flow throughout the research. 

 

               
                                                       (a)                                            (b) 

 
(d) 

Figure 2. Geometry (unit in mm) and image of specimen images (a) top view; (b) side 

view; (c) after; (d) before polishing process. 

 

Table 1. Chemical composition of carbon steel 1045 (wt%) [44]. 

 

C Mn Si P S Fe 

0.43 0.52 0.11 <0.02 0.011 Balance 

 

Testing procedure 

The tensile test was carried out to get the monotonic properties of the material such as the 

ultimate tensile strength (σu), yield stress (σy), and Young modulus (E).  The test was 

performed according to the ASTM E8 standard using the 100 kN universal testing 

machine (UTM) at the cross-speed rate of 1.2 mm/min. The ultimate tensile strength 

acquired from the test will be the input stress for the cyclic test. The cyclic test was 

performed at 75 %, 80 %, and 85 % of the σu value. The cyclic test was performed 

according to ASTM 466-96; Standard Practice for Conducting Force Controlled 

Specimen 

preparation 

Tensile 

test 

Cyclic fatigue test; 
a x UTS; 
0 < a <1; 

a = coefficient 

AE signals 

Clustering methods 

(c) 
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Constant Amplitude Axial Fatigue Tests of Metallic Materials procedure using the 25 kN 

table top servo hydraulic machine as shown in Figure 3. The hydraulic machine was 

controlled and calibrated by the Instron WaveGuide Matrix Software before the tests were 

run.  The specimens were controlled by the displacement of the specimens that has been 

setup in the program.  It has been run using the stress ratio, R = -1.  During the test, a 

piezoelectric sensor has been attached to collect the AE signals.  

 

        
         

Figure 3. Axial fatigue test set-up (a) 25 kN servo hydraulic machine, (b) Location of 

AE piezoelectric sensor on the specimen during the fatigue test. 

 

AE Data Acquisition Procedure 

In this study, a four channel of Vallen Systeme data acquisition system with the sampling 

frequency of 5000 kHz and 40 dB pre-amplification were used to record the signals. The 

piezoelectric sensor of range 100-2000 kHz was attached using silicon grease on the 

specimen during the test to collect the AE signals. The sampling frequency needs to be 

greater than twice of the sensor capabilities to avoid signal distortion called alias [26].  

Before each test, the pencil lead procedure was carried out to calibrate the data acquisition 

system in order to estimate the attenuation and the velocity of the signal, as well as to 

make sure that the sensor was attached correctly [27]. 

 

Signal Analysis 

The typical AE signal has some descriptors known as amplitude, rise time, duration, 

counts, and energy, while the entire signal in one activity is called an event. Only the 

amplitude is measured real time by the data acquisition system, whereas the other 

descriptors are defined from the waveform and threshold dependent.  In this research the 

feature extraction of AE signal that has been used is the rise time and amplitude, since 

these parameters have been used widely in assessing the material damage [21].  Figure 4 

shows the flowchart of K-means algorithm. 
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Figure 4.  Flowchart for K-means clustering technique 

 

RESULTS AND DISCUSSION 

 

The specimens made of SAE 1045 carbon steel underwent the tensile test to get the 

monotonic properties of the material as shown in Figure 5. The values from the curve 

were then tabulated in Table 2.  The ultimate tensile strength, σu of this material is 798 

MPa with 414 MPa of yield stress and 196 GPa of Young modulus. As mentioned in the 

earlier section, the input values of stresses for the cyclic fatigue test were based from the 

value of the σu..  Table 3 shows the stress values to be used in the cyclic test. It shows that, 

the test was carried out at three different loading conditions i.e.; 600 MPa, 640 MPa, and 

680 MPa where it is at 75 % σu, 80 % σu and 85 % σu respectively. The loading was 

selected based on the machine capability and the failure period of the specimens. Pilot 
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test on the specimen and machine shows that applied stress more than 680 MPa will 

vibrate the machine, while applied stress below 600 MPa will take more than one day for 

the specimen to break. 

 

 
 

Figure 5.  The stress-strain (σ-ε) curve for SAE 1045 at room temperature. 

 

Table 2. Monotonic properties for SAE 1045. 

 

Properties Value 

Ultimate Tensile Stress, σu 798 MPa 

Yield Stress, σy 414 MPa 

Young Modulus, E 196 GPa 

 

Table 3. Applied stress for the cyclic test. 

 

Percentage of σu (%) Stress Value 

70 600 MPa 

80 640 MPa 

85 680 MPa 

 

The overall AE events for three different stress values are shown in Figure 6 (a, 

b, and c).  The signals were collected throughout the test until the specimen fracture. 

Every dot in the event is called a hit. Every hit has its own waveform and characterised 

by their own descriptors as shown in Figure 6 (d). Many research used AE basic 

descriptors in their analysis. A group of researchers monitored of crack propagation in 

the pressure vessel, where they used the counts, duration, amplitude, and rise time to 

detect various stages of damage of heat affected zone (HAZ) and welded steel [28]. Latest, 

all the basic descriptors ie., hit, count, rise time, and amplitude were used to localise and 

identify the fatigue matrix cracking and delamination in the carbon fibre panel [29]. In 

this work, amplitude and rise time were used as the feature extraction for every signal.    

σy 

 

σu. 
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                                   (a)                                                                (b) 

 

 
                                  (c)                                                               (d)  

 

Figure 6. Original time history AE event at (a) 600 MPa; (b) 640 MPa; (c) 680 MPa; (d) 

a typical burst waveform of an AE hit at high amplitude hit 

 

The amplitude and rise time of the hits were extracted from the AE event to be the 

input value in the clustering process. In AE application, clustering analysis has been used 

widely to differentiate the damage level in a material.  K-means clustering technique has 

been used to identify the damage mechanism under fatigue loading condition on an E-

glass/epoxy laminates [30].  Meanwhile, fuzzy C-means clustering associated with 

principle component analysis (PCA) has been used to correlate the damage mechanism 

of the polymer – based composite materials [27]. In this research, the K-means clustering 

analysis was used to show the damage level experience by the specimens.  Figure 7 shows 

the K-means centroid of rise time and amplitude for stress loading of 600 MPa.  In this 

work, every cluster shows the scatter pattern of data consisting of two-centroid cluster 

until five-centroid cluster.  Clusters in every set of data were determined based on the 

centroid calculated. Every set of data will be run from two-centroid cluster to five centroid 

cluster. Figure 7(a) shows only two-centroid cluster. It is a very weak cluster as it can be 

seen that all the maximum and minimum values of data are mixed because the centroid 

points were used randomly [31]. Then, three-centroid and four-centroid clusters were run 

and the cluster is scattered in Figure 7 (b) and (c). As for three-centroid, a yellow cluster 

was formed but the data were still split with a range of distance. Moreover, the four-

centroid cluster looks more convincing as data were closed to the centroid accordingly.  

Some data were found as outlier in this cluster and this means that the cluster is not 

optimum enough to represent the whole data.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 7. The K-means cluster for data 600 MPa (a) two-centroi; (b) three-centroid; (c) 

four-centroid; (d) five-centroid 
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In fatigue an outlier data cannot be ignored as it may represent a negative effect of overall 

data [32].  The five-centroid cluster was shows that the data were nicely grouped 

according to the nearest centroid. Some of the outliers found their own cluster.  The data 

were clustered accordingly to the value of the rise time and amplitude. In this case cluster 

five can be the fracture stage as the amplitude of the signals was high. In AE, when the 

specimens were about to break or fail, the rise time became very short with high amplitude 

magnitude. It is also shown in some other researchers’ studies that carried out the fatigue 

test to laminate material [30].  

Figure 8 shows the clusters built for specimen that was given 640 MPa stress load.  

As before, the two-centroid cluster contains mixed data. Three-centroid cluster seems to 

have too many outliers that can be grouped to another cluster. The best cluster is with 

five-centroid that is split between lower and higher amplitude data corresponding to their 

own rise time value.  In this case the breaking part happens in cluster one with the one in 

red colour. Data with high amplitude definitely show that the cluster is approaching the 

fracture stage, but in this case the rise time value is also high.  According to some 

reseachers, the AE activity in intergranullar will increase during the fracture stage [33]. 

The cluster for specimen at 680 MPa is shown in Figure 9, in which the best cluster is 

five-centroid cluster. Cluster five in pink is the fracture stage of the specimen with high 

amplitude and low rise time, similar to what has been found for specimen that has given 

600 MPa stress load. The data scattered nearby the centroid show the closeness between 

the data and centroid. From this analysis, the failure of this material can be predicted by 

the grouping or cluster found for every stress given to the component. To make sure that 

the cluster has been assigned correctly for every case of data, the objective function needs 

to be determined.  Objective function is the average distance between data points in the 

entire centroid cluster. For instance, the objective function for all data has been tabulated 

in Table 4, where the smallest objective function has been circled for all data groups. All 

data show that the minimum value of objective function is found at the cluster five or 

five-centroid cluster. It also means that when more clusters are created in the signal, the 

data distributions are more focused on the centroid and automatically decrease the 

distance to the centroid. Other than that, smaller numbers of objective function show that 

the data are closer to the centroid. To determine the optimum numbers of clusters in the 

data, the lowest value of objective function has to be achieved [20].   

 

Table 4.  Objective function values. 

 

Cluster 

group 

Value of objective function 

600 MPa 640 MPa 680 MPa 

K=2 4.2 4.4  4.4  

K=3 4.0 4.0  3.4  

K=4 3.6 4.0 3.3 

K=5 2.6 3.2 3.0 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 8. The K-means cluster for data 640 MPa (a) two-centroid; (b) three-centroid; (c) 

four-centroid; (d) five-centroid.  
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(a) 

 
(b) 

 
(c) 

 
(d)  

 

Figure 9. The K-means cluster for data 680 MPa (a) two-centroid; (b) three-centroid; (c) 

four-centroid; (d) five-centroid 
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CONCLUSIONS 

 

The behaviour of AE signals under fatigue damage condition can be monitored and 

clustered using the K-means analysis in this paper. By using the K-Means clustering 

analysis plots, the grouping of the damage level experienced by the specimen was done 

based on the number of centroid points.  For specimens that experienced stress levels at 

600, 640, and 680 MPa, the best clusters were found for five centroid points with the 

smallest objection function value of 2.6, 3.2, and 3.0 for 600, 640, and 680 MPa 

respectively.  From this analysis, the failure can be predicted using the clusters or groups 

that have been assigned to every case. Thus, it can be a good benchmark in designing a 

structure using this type of material to prevent sudden breakdown from happening. 
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