NANOFLUIDS HEAT TRANSFER ENHANCEMENT THROUGH STRAIGHT CHANNEL UNDER TURBULENT FLOW

M. Kh. Abdolbaqi1*, C.S.N. Azwadi3, R. Mamat1, W.H. Azmi1,2 and G. Najafi4

1Faculty of Mechanical Engineering, Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia
*Email: abdolbaqi.mk@gmail.com
Phone: +601121752996; Fax: +6094246222

2Automotive Engineering Centre, Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia

3Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81200 Skudai, Johor Bahru, Malaysia

4Tarbiat Modares University, Tehran, Iran

ABSTRACT

The need for high thermal performance thermal systems has been eventuated by finding different ways to enhance heat transfer rates. This paper introduces and analyzes numerically the heat transfer enhancement of nanofluids with different volume concentrations under turbulent flow through a straight channel with a constant heat flux condition. Solid nanoparticles of TiO2 and CuO were suspended in water as a base fluid to prepare the nanofluids. CFD analysis is conducted by FLUENT software using the finite volume method. The heat flux considered is 5000 W/m2, the Reynolds numbers are 10^4–10^6 with a constant volume concentration of 1–3%. Based on the analysis of the numerical results, it is found that the heat transfer rates and wall shear stress increase with increase of the nanofluid volume concentration. It appears that the CuO nanofluid significantly enhances the heat transfer. Furthermore, the numerical results are validated with the literature data available and show good agreement, with 4% deviation. The study concluded that the enhancement of the friction factor and Nusselt number is by 2% and 21%, respectively for the nanofluids at all Reynolds numbers. Therefore, nanofluids are considered to have great potential for heat transfer enhancement and are applied in heat transfer processes.

Keywords: Nanofluid; heat transfer; straight channel; CFD.

INTRODUCTION

Using heat transfer enhancement techniques can improve the thermal performance of a channel. Heat transfer techniques can be classified into three broad techniques: passive techniques that do not need external power such as rough surfaces, swirl flow devices, treated surfaces, extended surfaces, displaced enhancement devices, surface tension devices, coiled tubes and additives such as nanoparticles; active techniques that need external power to enable the desired flow modification to increase the heat transfer such as electrostatic fields, mechanical aids, jet impingement, suction, injection, surface vibration, and fluid vibration; compound techniques that are a mix of two or more of the abovementioned techniques. There are many applications of heat transfer augmentation by using nanofluids to ensure the cooling challenge necessary [1-3], such as in...
photonics, transportation, electronics, and energy supply industries. [4-10] examined the effect of volume fraction and temperature on the viscosity of water-based TiO₂, SiO₂, and Al₂O₃ nanofluids [11-13]. Results were recorded and analyzed within a temperature range of 25–70 °C and volume concentrations of 0.1, 0.4, 0.7 and 1%. The viscosity of the nanofluid was experimentally measured by Bobbo, Fedele [14] utilizing a rheometer. It was obtained as a function of the nanoparticles shear rate and mass fraction. A double tube coaxial heat exchanger heated by solar energy using aluminum oxide nanofluid was presented experimentally and numerically by Luciu, Mateescu [15]. Their results showed that the heat transfer performance of nanofluid is higher than base fluid. Water was already used as a base fluid for two non-similar materials, titanium dioxide (TiO₂) and single wall carbon nanohorn (SWCNH). The results showed the empirical correlation equations of viscosity. The turbulent flow of CuO, Al₂O₃ and TiO₂ nanofluids with different volume concentrations flowing through a two-dimensional duct under constant heat flux condition has been analyzed numerically [16].

In this study, heat transfer enhancement in a straight channel is carried out. The CFD analysis is performed using FLUENT software with the finite volume method. The heat flux, Reynolds numbers and the volume concentration are 5000 W/m², 10⁴–10⁶, and 1–3% respectively. The nanofluids TiO₂ and CuO dispersed in water are utilized. The results are compared with experimental data available in the literature for validation.

NUMERICAL MODEL

The numerical calculation was carried out using CFD code (ANSYS FLUENT 15) for the studied geometries. The governing equations were solved at every cell for all values of flow, pressure and temperature. The first step involves the creation of the three-dimensional geometric models of the undertaken problem using a design modeler, and the second step is model mesh generation in ANSYS software. The straight channel geometry considered is illustrated in Figure 1. In the current study, to represent flow in the numerical simulation the Cartesian coordinate system (x, y, z) was used. The heat transfer and turbulent flow were established simultaneously downstream in the channel. Additionally, the inlet boundary conditions of the water or nanofluid were set as velocity inlets; likewise, the pressure outlets were selected for the outlet boundary conditions. Moreover, a constant heat flux of 5000 w/m² was applied to the exterior wall. The tube material is copper, the physical properties of which are taken as constant density \(q = 8978 \text{ kg/m}^3 \), specific heat \(C_p = 381 \text{ J/(kg K)} \), and thermal conductivity \(K = 387.6 \text{ W/(m K)} \).

![Figure 1. Cartesian geometry coordinates of problem undertaken.](image-url)
Grid Independence Test

Grid independence was tested in ANSYS FLUENT 15 software for the channel with 40x40x160 cells and subdivisions in the axial length, and surface face, respectively. To find the most suitable size of mesh face, a grid independence test was performed for the physical model. In this study, rectangular cells were used to mesh the surfaces and wall of the channel. The grid independence was checked by using different grid systems, and three mesh faces were considered 20x20x160, 40x40x160 and 20x20x200 for pure water. The Nusselt numbers estimated for all four mesh faces and results were satisfactory. Throughout the iterative process, accurate monitoring of the residuals was done. When the residuals for all governing equations were lower than 10^{-6}, all solutions were assumed to be converged. Finally, the results could be obtained when the ANSYS FLUENT 15 iterations led to converged results defined by a set of converged criteria. The friction factor and Nusselt number inside the channel could be obtained throughout the computational domain in the post-process stage. This can be seen in Figure 2.

![Figure 2. Grid independence test.](image)

![Figure 3. Model mesh.](image)
The grid independence test of the Nusselt number against Reynolds number was performed with respect to all the grid mesh sizes. All of the meshing sizes appeared to be satisfactory, but in this study the mesh size 40x40x160 was be considered as the optimum meshing size. Although any number of mesh faces for these four cases can be used, the mesh faces with 40x40x160 were the best in terms of accuracy, as shown in Figure 3.

Physical Model

The assumptions made for this study are limited to steady state, incompressible and Newtonian turbulent fluid flow, constant thermo-physical properties of nanofluid, no effect of gravity, and heat conduction in the axial direction. High Reynolds numbers as input parameters were estimated; a pressure treatment with a 3D realizable $k-\varepsilon$ turbulent model with enhanced wall treatment was employed, and converged solutions were considered for residuals lower than 25,000 for all the governing equations. The results of the simulation for the circular tube with nanofluids were compared with the equations of Blasius [17] in Eq. (1) for the friction factor and Dittus and Boelter [18] in Eq. [19] for the Nusselt number. The assumption of the problem undertaken is that the nanofluid behaves as a Newtonian fluid for concentrations less than 4.0% [20-22]. For conditions of dynamic similarity of the flow of the two media, nanoparticles and base fluid in the tube, the friction coefficients can be written as follows [17].

$$f_f = \frac{0.3164}{Re^{0.25}}$$

(1)

The system of governing criteria can be written as follows:

A number of investigators derive the empirical correlation from experimental data [23-25].

$$f_f = \frac{f_{nf}}{f_f} = 1.078 \left[\left(\frac{\rho_{nf}}{\rho_f} \right)^{-0.514} \left(\frac{\mu_{nf}}{\mu_f} \right)^{-0.1248} \right]$$

(2)

The forced convection heat transfer coefficient under turbulent flow may be estimated according to Dittus and Boelter [18] in Eq. (3) for the base fluid in the range of Reynolds number $10^4 < Re < 10^5$.

$$Nu = \frac{h_f}{k_f} D = 0.023 Re^{0.8} Pr^{0.4}$$

(3)

The modified Dittus–Boelter Eq. (4) is applicable for both base fluid and nanofluids with spherical-shaped nanoparticles dispersed in water as in (4).

$$Nu_{nf} = \frac{h_{nf}}{k_{nf}} D = 0.023 Re^{0.8} Pr_f^{0.4} \left(1 + Pr_{nf} \right)^{-0.012} \left(1 + \phi \right)^{0.23}$$

(4)

The Reynolds number depending on the diameter of the tube can be defined as:
Re = \frac{\rho_{nf} \times D \times u}{\mu_{nf}} \quad (5)

GOVERNING EQUATIONS

The realizable $k-\varepsilon$ turbulence model with wall heat treatment is used for turbulent flow simulation. The recent realizable turbulence model by Shih, Liou [27] is the most sophisticated model of the three $k-\varepsilon$ differences and is characteristics by two main variations from the standard $k-\varepsilon$ model. It utilizes a new equation for the turbulent viscosity equation and derives the dissipation rate transport equation from the mean-square vorticity fluctuation equation. Turbulent kinetic energy, k, and turbulent dissipation rate, ε, are combined with the governing equations using the relation of the turbulent viscosity $\mu_t = \frac{\rho C_{\mu} k^{3/2}}{\varepsilon}$, where $C_{\mu} = 0.09$ and the following values have been assigned in the ANSYS FLUENT inputs as empirical constants: $C_2 = 1.9$, $\sigma_f = 0.85$, $\sigma_c = 1.0$, and $\sigma_e = 1.2$.

$$k = \frac{3}{2} (u_I)^2, \varepsilon = C_{\mu}^{\frac{3}{2}} \frac{k^{3/2}}{L} \quad (6)$$

Furthermore, the character L in Eq. (6) refers to the turbulent characteristic length scale, which is set to be $0.07(d/2)$ in the current study. In addition, the factor of 0.07 has been adopted based on the maximum value of the mixing length in fully developed turbulent pipe flow. For an initial guess at the turbulent quantities (k and ε), the turbulent intensity (I) was specified, where the turbulent intensity for each case can be calculated based on Eq. (7) [28].

$$I = 0.16 \times Re^{-1/8} \quad (7)$$

With regard to the nanofluid, infinitesimal (less than 100 nm) solid particles are assumed to be able to use a single phase approach, so the single phase approach is adopted for nanofluid modeling. For all these assumptions, the dimensional conservation equations for steady state mean conditions are as in the following continuity, momentum and energy equations Eqs. (8-10).

$$\frac{\partial u}{\partial x} + \frac{\partial}{\partial r} (r \rho_{nf} u) = 0 \quad (8)$$

$$\frac{u}{\partial x} + \frac{\partial}{\partial r} (\rho_{nf} u) = -\frac{\partial p}{\partial x} + \frac{1}{r} \frac{\partial}{\partial r} \left[r(\nu + \varepsilon_u) \frac{\partial u}{\partial r} \right] \quad (9)$$

$$\frac{1}{r} \frac{\partial}{\partial r} (\rho u T) = \frac{1}{r} \frac{\partial}{\partial r} \left[r(\alpha + \varepsilon_H) \frac{\partial T}{\partial r} \right] + \frac{1}{r^2} \frac{\partial}{\partial x} \left[\frac{k_{nf}}{C_p} \frac{\partial T}{\partial x} \right] \quad (10)$$

The properties of solid particles are taken to be constant in the present operating conditions of 293 K to about 320 K. Therefore, in our simulations the properties of nanofluids are temperature-dependent. Table 1 shows the properties of nanofluids at the inlet section of the channel.
Table 1. Effective thermophysical properties of CuO–water and TiO$_2$–water ϕ in the range of 1–3 % and d_p=20 nm.

<table>
<thead>
<tr>
<th>Thermo-physical property</th>
<th>CuO ϕ=1%</th>
<th>CuO ϕ=2%</th>
<th>CuO ϕ=3%</th>
<th>TiO$_2$ ϕ=1%</th>
<th>TiO$_2$ ϕ=2%</th>
<th>TiO$_2$ ϕ=3%</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ (kg/m^3)</td>
<td>1050.8</td>
<td>1104</td>
<td>1157.1</td>
<td>1030.2</td>
<td>1062.8</td>
<td>1095.3</td>
</tr>
<tr>
<td>C_p (j/kg. K)</td>
<td>3960</td>
<td>3762.1</td>
<td>3582.4</td>
<td>4034.79</td>
<td>3899.52</td>
<td>3772.3</td>
</tr>
<tr>
<td>k (W/m.K)</td>
<td>0.616</td>
<td>0.632</td>
<td>0.65</td>
<td>0.615</td>
<td>0.63</td>
<td>0.6464</td>
</tr>
<tr>
<td>μ (Ns/m^2)</td>
<td>0.00103</td>
<td>0.00243</td>
<td>0.00267</td>
<td>0.00132</td>
<td>0.00154</td>
<td>0.0018</td>
</tr>
</tbody>
</table>

Verification Process

The verification process is very important to check the results. It can be seen in Figure 4(a) that the friction factor decreases with increasing Reynolds number under the turbulent flow condition. The Blasius [17] Eq. (1) results are indicated as a solid black line. It appears that there is good agreement among the CFD results and the equation. On the other hand, the results of the heat transfer coefficient are shown in Figure 4(b). The Dittus and Boelter [18] Eq. [19] is indicated also, as a solid black line. It seems that there is good agreement between the CFD analysis and the equation. Figure 5 shows a comparison among the computed values of the Nusselt numbers and the equations given by Gnielinski [31-33] for TiO$_2$ nanofluid. As shown, an excellent agreement is observed with the computed values from the theoretical equation, over the range of Reynolds numbers studied. The Gnielinski [31] and Pak and Cho [33] correlations are indicated as a dotted black and solid black lines respectively.
Effect of Nanofluid Type

Figure 6(a) shows the comparison of the friction factor CFD analysis results for pure water and TiO$_2$ and CuO nanofluids under the turbulent regime. There seems to be an insignificant effect of the type of nanofluid on the friction factor under turbulent flow conditions. Likewise, Figure 6(b) indicates the Nusselt number with Reynolds number for pure water and TiO$_2$ and CuO nanofluids under the turbulent regime. It can be seen that CuO nanofluid has the highest Nusselt number values, followed by TiO$_2$. The reason for CuO having the highest Nusselt number values may be that it also has the highest values of thermal conductivity and lowest viscosity.

Figure 7 illustrates the local Nusselt numbers for CuO and TiO$_2$ nanofluid with volume fraction and nanoparticles diameter of 3% and 20 nm respectively. The result indicates that increasing the Reynolds number causes an increase in the local
Nusselt number. This is due to the fact that a higher Reynolds number leads to a higher velocity and temperature gradient at the channel [34].

Figure 7. Local Nusselt number with length of channel.

Effect of Concentration on Heat Transfer Enhancement

The heat transfer coefficient with the Reynolds number for CuO nanofluid and 1–3% volume fraction is demonstrated in Figure 8. The effect of the nanofluid volume fraction appears to be significant. The heat transfer coefficient for pure water is also indicated, as a solid black line. The maximum enhancement is 10% when the volume fraction increased from 1 to 3%. The heat transfer coefficient appeared to be affected significantly by increase of the Reynolds number and nanofluid volume fraction [35]. The thermal conductivity of nanoparticles plays a significant role in the enhancement of nanofluids heat transfer [5].

Figure 8. Effect of nanofluid concentration on the heat transfer coefficient at Reynolds numbers.
Effect of Nanoparticles Type and Concentration on Wall Shear Stress

The variation of the wall shear stress for CuO and TiO\(_2\) nanofluids with respect to the distance from the inlet section of the channel at Reynolds number 10\(^6\) and \(\phi=3\) is plotted in Figure 9. It can be observed that the wall shear stress varies depending on the type of nanoparticles. This condition is due to the variation in effective dynamic viscosity for different types of nanofluid [20].

![Figure 9. Shear stress for CuO and TiO\(_2\) nanofluids with respect to inlet distance.](image)

Figures 10 shows the relationship between the Reynolds number and the shear stress for different volume concentrations, \(\phi=1, 2\) and 3\%. The shear stress increases with Reynolds number. Further, it will increase the secondary flow, decrease the thermal boundary layer and subsequently increase the Nusselt number [16, 36]. The reduction in velocities leads to increase in wall shear resistance and subsequently provides more heat dissipation with the nanofluids [35, 37].

![Figure 10. Reynolds number and shear stress for different volume fractions.](image)
CONCLUSIONS

In the present study, the thermal properties of two types of nanoparticle suspended in water have been investigated numerically in forced convection heat transfer under turbulent flow with the uniform heat flux boundary condition of a straight channel. The heat transfer enhancement resulting from various parameters such as nanoparticle concentration of volume, and Reynolds number are reported. The finite volume method is used to solve the governing equations with certain assumptions and appropriate boundary conditions. The Nusselt number and friction factor are obtained through the numerical simulation. The study concluded that the enhancement of the friction factor and Nusselt number is by 2% and 21%, respectively for the nanofluids at all Reynolds numbers. The 3% volume concentration of nanofluid has the highest friction factor values, followed by 2% and 1%. The CFD analysis of pure water’s friction factor at the channel has higher values than in a circular tube, as estimated using the Blasius equation. The Nusselt number of CuO has the highest value, followed by TiO2. There is good agreement between the CFD analysis of the friction factor and the Nusselt number of the nanofluids with experimental data in the literature, with a deviation of not more than 4%.

ACKNOWLEDGEMENTS

The financial support by Universiti Malaysia Pahang (UMP) under RDU1403110 and also Automotive Excellence Center (AEC) under RDU1403153 are gratefully acknowledged.

REFERENCES

