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ABSTRACT 

 

This paper aims to predict the heat transfer and pressure drop for an in-line flat tubes 

configuration in a cross-flow using an artificial neural network. The numerical study of 

a two-dimensional steady state and incompressible laminar flow for an in-line flat tube 

configuration in a cross-flow is also considered in this study. The Reynolds number 

varies from 10 to 320. Heat transfer coefficient and pressure drop results are presented 

for tube configurations at three transverse pitches of 2.5, 3.0, and 4.5 with two 

longitudinal pitches of 3.0 and 6.0. The predicted results for the average Nusselt number 

and dimensionless pressure show good agreement with previous work. The accuracy 

between the actual values and the neural network approach model results was obtained 

with a mean absolute relative error less than 4.1%, 4.8%, and 3.8% for the average 

Nusselt number, dimensionless pressure drop and average friction factor, respectively.  

 

Keywords: In-line flat tube; finite volume technique; modelling; radial basis function 

network. 

 

INTRODUCTION 

 

The fluids flow and heat transfer in tube banks symbolize an idealization of many 

industrially significant processes. Tube bundles are widely employed in cross-flow heat 

exchangers, but the design is still based on empirical correlations of heat transfer and 

pressure drop [1, 2]. Heat exchangers with tube banks in a cross-flow are of great 

practical interest in many thermal and chemical engineering processes [3-6]. Flat tube 

designs have been newly introduced for use in modern heat exchanger applications such 

as automotive radiators. Flat tubes seem to have more appropriate pressure drop 

characteristics than circular tubes [7]. The forced convection heat transfer over a bundle 

of circular cylinders was investigated numerically [8-11] and non-square tubes in both 

in-line and staggered tube arrangements [12-16].  The flow over a bank of elliptical 

cylinder tubes was presented by Yianneskis et al. [17], both numerically and 

experimentally. Tahseen et al. [18-20] did numerical studies on incompressible, steady 

state flow and using the body fitted coordinate (BFC). The studies were based on heat 

transfer over a staggered two flat tube arrangement. The second study investigated heat 

transfer over a series of flat tubes between two parallel plates and a third study was of 
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heat transfer over an in-line circular tube bank. The three studies show the effect of the 

Reynolds number on the Nusselt number, which increases with increase of the Reynolds 

number.  

Artificial neural networks have been used in many engineering applications 

because they provide better and more reasonable solutions [21, 22]. A feed-forward 

back-propagation ANN was used by Ermis et al. [23] to analyse the heat transfer of a 

phase change process in and around a finned tube in a study that was both numerical 

and experimental. The mean relative error was 5.58% for the experimental study while 

for the numerical model it was 14.99%. Fadare and Fatona [24]] studied ANNs in the 

modelling of a staggered multi-row, multi-column, cross-flow, tube-to-tube heat 

exchanger and the experimental data for air flow over a bundle of tubes. Their results 

show that the mean absolute relative error is less than 4% and 1% for the test and 

training data sets, respectively. Islamoglu and Kurt [25] used the ANNs model for heat 

transfer in a corrugated channel. The error between the experimental results and ANNs 

approached an approximation of the mean absolute relative error of less than 4%. In a 

recent study, Tahseen et al. [26] numerically analysed the thermal and fluid 

characteristics of airflow in an in–line configuration of flat tube bundles.  The neuro-

fuzzy inference system (ANFAS) model was used to predict the coefficient of heat 

transfer and pressure drop. The results are shown in the form of streamline, temperature 

contours, average Nusselt number, and dimensionless pressure drop. The key results 

show that the average deviation between the numerical and ANFIS model values for 

average Nusselt number is 1.90%, and the dimensionless pressure drop is 2.97%. 

Therefore, this study also focused on the applicability of the Radial Basis Function 

Network method for analysis of heat transfer and pressure drop in an in-line flat tube 

bank utilized in the design of heat exchangers to promote heat transfer.  

 

MATHEMATICAL FORMULATION 

 

There are four isothermally heated horizontal flat tubes in a row. The flat tubes have 

two diameters, the transverse, dT and the longitudinal, dL, and the surface temperature of 

tube Ts is placed in the velocity uin and the uniform inlet free stream of temperature Tin 

in the in-line arrangements. The longitudinal pitch-to-small diameter ratio PL = P1/dT 

gives 3.0 and 6.0, while the transverse pitch-to-small diameter ratio PT =P2/dT values 

are 2.5, 3.5 and 4.5. The flat tube should be long enough so that the end effect of the 

tube can be neglected. Therefore the flow field can be assumed to be two-dimensional. 

The configurations flow and calculated fields in the flow over the in-line flat tube bank 

are shown in Figure 1(a).  

The governing equations were transformed into dimensionless form upon 

incorporating the following non-dimensional variables:  
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where (x,y) are the Cartesian coordinates, m; ρ the air density, kg/m
3
; p pressure, N/m

2
; 

uin the inlet velocity of air, m/s; (u,v) the fluid velocity, m/s; T fluid temperature, 
o
C; Tin 

inlet free stream temperature, 
o
C; Ts surface temperature of the tube, 

o
C; Dh hydraulic 
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diameter of the tube, m; μ the air dynamic viscosity, kg/m s; cP the air specific heat  

J/(kg K) and k the air thermal conductivity W/(m K). 

In developing the model, the following assumptions were made: (i) the physical 

properties of air flow are constant; (ii) the air flow is incompressible and laminar; and 

(iii) the flow and heat transfer are steady state. The governing equations for two-

dimensional continuity, Navier-Stokes for momentum, and energy equation can be 

written as follows [4]: 

 

The continuity equation: 

 

    0v                                                             (2) 

 

Momentum (Navier-Stokes) equation: 

 

       v  vv   P                                             (3) 

 

Energy equation: 

 

       T
 

T v 
Pc

k


                                            (4) 

 

In Eqs. (2) and (3), v is the velocity vector (u,v). 

 

The physical system considered in the present study is displayed in Figure 1(a). 

The boundary conditions used for the solution domain are uniform inlet velocity, fully 

developed outflow, and a combination of symmetry and no-slip tube surfaces on the 

bottom and top boundaries. To complete the formulation of the issue, the boundary 

conditions are determined to simplify the two-dimensional solution domain, as 

illustrated in Figure 1(a). The boundary conditions can be summarised as below: 

 

The entrance to the domain: 0        1  V,U  
 

Symmetric lines:              0     ,0   ,0  YVYU    

 

The exit from the domain:   0    ,0   ,0  XXVXU   

 

The surface of tubes:        1   0,    ,0  VU  

 

The set of conservation Eqs. (2) to (4) can be re-written in general form in 

Cartesian coordinates as Eq. (5): 
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The continuity equation, Eq. (2), has no diffusion and source terms. It will be 

used to derive an equation for the pressure correction. The grid generation scheme based 

on elliptic partial differential equations is used in the present study to generate the 
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curvilinear coordinates. Eq. (5) can be transformed from the physical domain to the 

computational domain according to the following transformation    y,x,y,x    

[27]. The schematic of the computational grid is illustrated in Figure 1(b). 

The final form of the transformed equation can be written as Eq. (6): 

 

 
(a) 

 

   
Entrance domain Inner (main) domain Exit domain 

(b) 

 

Figure 1. In-line flat tube bank: (a) Tube arrangement and computational domain; 

 (b) Schematic of computational grid systems generated by the body-fitted coordinates. 
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They are expressed as:  

 

  























































































































































22

22

21

      , 

,         , 

,                 ,














yxyyxx

yxXYYX
J

Y
U

X
VG

X
V

Y
UG

                (7) 

 

In this study, the finding of the overall pressure drop and Nusselt number for the 

resulting air flow and temperature fields are the total pressure drop for the flat tube bank 
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system is represented using an average friction factor, fc and average Nusselt number, 

Nu  [12] defined as: 

 

k

Dh
Nu h

                                                      (8) 
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where NL is the number of tubes in depth of row. 

 

NUMERICAL METHODS  

 

The governing equations are solved numerically using FORTRAN 95. The computer 

code solved the equation of continuity, momentum and energy discretized using a finite-

volume technique based on a non-orthogonal coordinate system with Cartesian velocity 

components and a non-staggered (collocated) grid [29] with the co-operation of the 

SIMPLE algorithm [17, 30]. These have been monitoring the convergence to steady 

state using determination of iterator-to iterator variations of a field variable normalized 

by its domain. The normalized maximum root mean square (RMS) is defined as: 
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where  was U, V, P, and θ. The value of RMS was checked in all the nodal locations 

and convergence was announced when the upper values of RME were typically less 

than 1×10
-4

. The numerical model was validated with some of the previously published 

standard problems. The comparison between the code results and Bahaidarah et al. [3] is 

shown in a previous publication by Tahseen et al. [26]. 

 

CALCULATION PROCEDURE FOR THE GENERALIZED RADIAL BASIS 

FUNCTIONS NEURAL NETWORKS 

 

The artificial neural network is an information processing system that has certain 

properties in a joint performance with biological neural networks. Artificial neural 

networks are one of the most commonly used and developed models to investigate the 

relationship between linear or non-linear input-output patterns. Moreover, they try to 

circulate a training set and then approximate the test team. Performance is measured 

using RBFN with predictable success. There is a lot of literature giving detailed ANN 

types related with function approximation. Schematic diagrams for some artificial 

intelligence models used in the analysis are shown in Figure 2. The neural networks use 

the MATLAB program and all the tests have been implemented on a computer. 

Activation of the error function used in this study is a function of the logistic sigmoid 

and standard total of squared error function. 
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The data was evaluated numerically in this study and normalized in order to get 

the values. The formula used is as follows:  

 

    LowLowHigh
MinimumMaximum

MinimumvalueActual





                         [31] 

  

where maximum is the maximum data value, minimum is the minimum data value, low 

is the minimum normalized data value = 0.1, and high is the maximum normalized data 

value = 0.9 [32]. 

 

                            
                            (a)                                                                            (b) 
 

Figure 2. Schematic of system models: (a) input and output; (b) the radial basis 

functions neural networks. 

 

RESULTS AND DISCUSSION 

 

Analysis of the numerical performances was conducted to verify the results from the 

RBFN model. Sixty numerical simulation data were used to construct the RBFN model. 

To improve the proposed model, twenty data (about 2/3×100%) were used for training 

and ten data the remainder for testing performance (about 100/3%) were used to test the 

RBFN model.  

The relative error (RE) for variable B and the mean relative error [33] are 

estimated by Eq. [34] [35]: 
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where Num, Pred and N stand for the numerical values, predicted values and the number 

of numerical data, respectively.  

The relative error results of the ANN model for average Nusselt number, 

dimensionless pressure drop and average friction factor are presented in Figure 3 for the 

training data. The maximum absolute relative error for the average Nusselt number, 

dimensionless pressure drop and average friction factor are ±7.109%, ±8.104%, and 

±6.321%, respectively. The regressive model versus predicted (neural network) model 

heat transfer coefficient in the flat tube banks with the radial basis function as well as 

the dimensionless pressure drop and average friction factor are good agreement. 
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The comparison of the numerical Nusselt number, dimensionless pressure drop 

and average friction factor with those from various radial basis function methods of 

training groups are presented in Figure 4. The result shows that the predicted values are 

in good agreement with numerical values. It can be clearly seen from Figure 4(a) that 

the predicted set values remained with a maximum relative error ±7.11% of the 

available data for average Nusselt number. In addition, the maximum relative error for 

dimensionless pressure drop and average friction factor is ±8.10% and ±6.32%, 

respectively. Figure 4(b) and (c) presents the performance of the RBFN model for the 

training data used in the dimensionless pressure drop and average friction factor. On the 

other hand, the mean relative error is 4.73%, 5.02% and 3.80%, for average Nusselt 

number, dimensionless pressure drop and average friction factor, respectively. 

However, the RBFN models appear to perform slightly better. This better performance 

was shown by the higher coefficient of determination R
2
 value 0.999 vs. 0.995. 

 

     
                              (a)                                                                         (b) 
 

 
(c) 

Figure 3. The relative error for training data using (a) average Nusselt number;  

(b) dimensionless pressure drop; (c) average friction factor. 

 



 

 

Heat transfer and pressure drop prediction in an in-line flat tube bundle by radial basis function network 

 

2010 

 

The numerical values were compared with data obtained by the RBFN, as 

illustrated in Figure 5 and Table 1. These figures contain the testing data for average 

Nusselt number, dimensionless pressure drop and average friction factor. Note also that 

the predicted values are very close to the numerical values with least error. With the 

best RBFN configuration, the maximum relative errors were around ±7.04%, ±7.79%, 

and ±5.12%, and mean absolute relative error was 5.01%, 4.38%, and 3.35%, for the 

average Nusselt number, dimensionless pressure drop and average friction factor, 

respectively. For the average Nusselt number, dimensionless pressure drop and average 

friction factor, the predictions of the RBFN were in excellent agreement with the 

numerical values coefficient of determination, R
2
 value 0.914 vs. 0.999. 

 

          
 

                                 (a)                                                                         (b) 

 

 
 

(c) 
 

Figure 4. Scatterplots of the training data for (a) average Nusselt number; 

 (b) dimensionless pressure drop; (c) average friction factor. 
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                                  (a)                                                                  (b) 

 
(c) 

Figure 5. Scatterplots of the testing data for (a) average Nusselt number; 

 (b) dimensionless pressure drop; (c) average friction factor. 

 

Table 1. Comparison of average Nusselt number and dimensionless pressure drop of 

ANN model for testing data. 

 

Run no. 1 6 7 11 12 16 21 22 26 27 

Average Nusselt number 

Numerical 6.51 5.87 8.38 5.62 8.02 6.59 5.94 8.74 5.70 8.38 

RBFN 6.32 5.45 7.99 5.89 7.68 6.37 6.30 9.22 6.10 8.01 

%RE  3.03 7.04 4.62 5.05 4.24 3.32 5.97 5.48 6.96 4.45 

%MRE 5.02 

Dimensionless pressure drop 

Numerical 17.82 9.41 2.32 6.97 1.71 19.41 10.10 2.67 7.32 1.93 

RBFN 16.57 8.88 2.21 6.75 1.58 18.37 9.87 2.61 7.03 1.90 

%RE  6.99 5.63 4.54 3.14 7.79 5.39 2.27 2.18 4.04 1.88 

%MRE 4.38 

Average friction factor 

Numerical 2.23 1.18 0.29 0.87 0.21 2.43 1.26 0.33 0.96 0.24 

RBFN 2.18 1.13 0.28 0.83 0.21 2.37 1.22 0.32 0.88 0.24 

%RE  2.05 3.67 4.21 5.03 1.23 2.46 3.012 5.124 4.321 2.342 

%MRE 3.35 
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CONCLUSIONS 

 

In this article, the model developed used an RBFN to estimate the heat transfer 

coefficient and pressure drop in a cross-flow over an in-line flat tube bank. The 

following conclusions were obtained:   

 

i) For the average Nusselt number, the maximum relative error for training is 

±7.1% and the mean relative error is 4.73%. For the testing data the values are 

±7.04% and 5.02%, respectively. 

ii) For the dimensionless pressure drop, the maximum relative error for training is 

±8.10% and the mean relative error is 3.96%. For the testing data the values are 

±7.79% and 4.38%, respectively. 

iii) For the average friction factor, the maximum relative error for training is 

±6.21% and the mean relative error is 3.80%. For the testing data the values are 

±5.12% and 3.35%, respectively. 

iv) The prediction of the average transfer coefficient, dimensionless pressure drop 

and average friction factor with the RBFN model is in good agreement with the 

numerical result, and also has a smaller error.  

v) Finally, this study clearly shows that the RBFN model is better for predicting the 

heat transfer rate and pressure drop in an in-line flat tube bank with 

comprehensive performance. 
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NOMENCLATURES 

 

cP specific heat capacity of fluid, 

J/(kg K) 
T temperature,  

o
C  

dL longitudinal diameter of tube, m u, v velocity components, m/s 

dT transverse diameter of tube, m U, V dimensionless  velocity 

Dh hydraulic diameter of tube, m x, y Cartesian coordinates, m 

fc Average friction factor X, Y dimensionless Cartesian 

coordinates 

G1, G2 contravariant velocity 

components 
Greek symbols 

J Jacobian of the transformation  ,,

 

coefficients of transformation 

h  average heat transfer coefficient,  

W/(m
2
 K) 

Г diffusion coefficient 
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k thermal conductivity of fluid, 

W/(m K)
 

  dynamic viscosity, kg/(m s)
 

NL number of tubes in deep row   kinematic viscosity, m
2
/s 

Nu  average Nusselt number θ dimensionless temperature 

p pressure, Pa   density, kg/m
3
 

P1 longitudinal distance, m , curvilinear coordinates 

P2 transverse distance, m  general dependent variable 

PL longitudinal pitch Subscripts 

PT transverse pitch in in 

Pr Prandtl number L longitudinal 

Re Reynolds number out out 

S source term T transverse 

 

 

 

 


