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ABSTRACT

This paper aims to predict the heat transfer and pressure drop for an in-line flat tubes
configuration in a cross-flow using an artificial neural network. The numerical study of
a two-dimensional steady state and incompressible laminar flow for an in-line flat tube
configuration in a cross-flow is also considered in this study. The Reynolds number
varies from 10 to 320. Heat transfer coefficient and pressure drop results are presented
for tube configurations at three transverse pitches of 2.5, 3.0, and 4.5 with two
longitudinal pitches of 3.0 and 6.0. The predicted results for the average Nusselt number
and dimensionless pressure show good agreement with previous work. The accuracy
between the actual values and the neural network approach model results was obtained
with a mean absolute relative error less than 4.1%, 4.8%, and 3.8% for the average
Nusselt number, dimensionless pressure drop and average friction factor, respectively.

Keywords: In-line flat tube; finite volume technique; modelling; radial basis function
network.

INTRODUCTION

The fluids flow and heat transfer in tube banks symbolize an idealization of many
industrially significant processes. Tube bundles are widely employed in cross-flow heat
exchangers, but the design is still based on empirical correlations of heat transfer and
pressure drop [1, 2]. Heat exchangers with tube banks in a cross-flow are of great
practical interest in many thermal and chemical engineering processes [3-6]. Flat tube
designs have been newly introduced for use in modern heat exchanger applications such
as automotive radiators. Flat tubes seem to have more appropriate pressure drop
characteristics than circular tubes [7]. The forced convection heat transfer over a bundle
of circular cylinders was investigated numerically [8-11] and non-square tubes in both
in-line and staggered tube arrangements [12-16]. The flow over a bank of elliptical
cylinder tubes was presented by Yianneskis et al. [17], both numerically and
experimentally. Tahseen et al. [18-20] did numerical studies on incompressible, steady
state flow and using the body fitted coordinate (BFC). The studies were based on heat
transfer over a staggered two flat tube arrangement. The second study investigated heat
transfer over a series of flat tubes between two parallel plates and a third study was of
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heat transfer over an in-line circular tube bank. The three studies show the effect of the
Reynolds number on the Nusselt number, which increases with increase of the Reynolds
number.

Artificial neural networks have been used in many engineering applications
because they provide better and more reasonable solutions [21, 22]. A feed-forward
back-propagation ANN was used by Ermis et al. [23] to analyse the heat transfer of a
phase change process in and around a finned tube in a study that was both numerical
and experimental. The mean relative error was 5.58% for the experimental study while
for the numerical model it was 14.99%. Fadare and Fatona [24]] studied ANNSs in the
modelling of a staggered multi-row, multi-column, cross-flow, tube-to-tube heat
exchanger and the experimental data for air flow over a bundle of tubes. Their results
show that the mean absolute relative error is less than 4% and 1% for the test and
training data sets, respectively. Islamoglu and Kurt [25] used the ANNs model for heat
transfer in a corrugated channel. The error between the experimental results and ANNs
approached an approximation of the mean absolute relative error of less than 4%. In a
recent study, Tahseen et al. [26] numerically analysed the thermal and fluid
characteristics of airflow in an in-line configuration of flat tube bundles. The neuro-
fuzzy inference system (ANFAS) model was used to predict the coefficient of heat
transfer and pressure drop. The results are shown in the form of streamline, temperature
contours, average Nusselt number, and dimensionless pressure drop. The key results
show that the average deviation between the numerical and ANFIS model values for
average Nusselt number is 1.90%, and the dimensionless pressure drop is 2.97%.

Therefore, this study also focused on the applicability of the Radial Basis Function
Network method for analysis of heat transfer and pressure drop in an in-line flat tube
bank utilized in the design of heat exchangers to promote heat transfer.

MATHEMATICAL FORMULATION

There are four isothermally heated horizontal flat tubes in a row. The flat tubes have
two diameters, the transverse, dr and the longitudinal, d;, and the surface temperature of
tube Ts is placed in the velocity uj, and the uniform inlet free stream of temperature T,
in the in-line arrangements. The longitudinal pitch-to-small diameter ratio P, = P,/dr
gives 3.0 and 6.0, while the transverse pitch-to-small diameter ratio Pt =P,/dt values
are 2.5, 3.5 and 4.5. The flat tube should be long enough so that the end effect of the
tube can be neglected. Therefore the flow field can be assumed to be two-dimensional.
The configurations flow and calculated fields in the flow over the in-line flat tube bank
are shown in Figure 1(a).

The governing equations were transformed into dimensionless form upon
incorporating the following non-dimensional variables:

X, u,v
(X’Y):(Dy)’ P = P = (U,V)I( : )
h Px(uin) Uin (1)
QZT_Tin ’ Re:ui“XDh, Pr:,uXCp
Ts_Tin v k

where (x,y) are the Cartesian coordinates, m; p the air density, kg/m?®; p pressure, N/m?;
Uin the inlet velocity of air, m/s; (u,v) the fluid velocity, m/s; T fluid temperature, °C; T,
inlet free stream temperature, °C; T surface temperature of the tube, °C; Dy, hydraulic
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diameter of the tube, m; p the air dynamic viscosity, kg/m s; cp the air specific heat
J/(kg K) and k the air thermal conductivity W/(m K).

In developing the model, the following assumptions were made: (i) the physical
properties of air flow are constant; (ii) the air flow is incompressible and laminar; and
(iii) the flow and heat transfer are steady state. The governing equations for two-
dimensional continuity, Navier-Stokes for momentum, and energy equation can be
written as follows [4]:

The continuity equation:

V-v=0 @)
Momentum (Navier-Stokes) equation:
oV(VV)=-VP+uV-(VV) (3)
Energy equation:
k
V(vT)=——V-(VT) (4)
PCp

In Egs. (2) and (3), v is the velocity vector (u,v).

The physical system considered in the present study is displayed in Figure 1(a).
The boundary conditions used for the solution domain are uniform inlet velocity, fully
developed outflow, and a combination of symmetry and no-slip tube surfaces on the
bottom and top boundaries. To complete the formulation of the issue, the boundary
conditions are determined to simplify the two-dimensional solution domain, as
illustrated in Figure 1(a). The boundary conditions can be summarised as below:
The entrance to the domain: U =1, V =6=0
Symmetric lines: ou/oY =0, V=0, 96/oY =0
The exit from the domain: oU/dX =0, dV/oX =0, 06/0X =0
The surface of tubes: Uu=0, V=0 6=1

The set of conservation Eqs. (2) to (4) can be re-written in general form in
Cartesian coordinates as Eq. (5):

5(U¢)+a(v¢)=i(r%}ri[r%j+s ©)
X oY ox\ ox) eyl avy) Y

The continuity equation, Eq. (2), has no diffusion and source terms. It will be
used to derive an equation for the pressure correction. The grid generation scheme based
on elliptic partial differential equations is used in the present study to generate the
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curvilinear coordinates. Eq. (5) can be transformed from the physical domain to the
computational domain according to the following transformation ¢ = ¢(x,y),7 =n(x,y)

[27]. The schematic of the computational grid is illustrated in Figure 1(b).
The final form of the transformed equation can be written as Eq. (6):

P, <—dL _.|

=>T& Yy h O @

symmetry

Air flow

L
Entrance domaln Inner (main) domain Exit domain

(b)

Figure 1. In-line flat tube bank: (a) Tube arrangement and computational domain;
(b) Schematic of computational grid systems generated by the body-fitted coordinates.

0 d r( op o4 op ¢
P+, 62)= (:( ( e VanD aﬂ(J(ﬂan acB”X% (6)

They are expressed as:

Gy = vy X G, = vy
on  on o A&
2 2
:(a_xa_v_a_va_x} a(a_j {@j | 0
8¢ dn ¢ on on on
(xax) (v ay) L (x) (o 2
_agan oc on )’ ol 54”

In this study, the finding of the overall pressure drop and Nusselt number for the
resulting air flow and temperature fields are the total pressure drop for the flat tube bank
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system is represented using an average friction factor, f. and average Nusselt number,
Nu [12] defined as:

N_U _ hx Dh (8)
k
f = (Pin — Pout) [28]

) 2></OX(Uin)2 x N
where N is the number of tubes in depth of row.

NUMERICAL METHODS

The governing equations are solved numerically using FORTRAN 95. The computer
code solved the equation of continuity, momentum and energy discretized using a finite-
volume technique based on a non-orthogonal coordinate system with Cartesian velocity
components and a non-staggered (collocated) grid [29] with the co-operation of the
SIMPLE algorithm [17, 30]. These have been monitoring the convergence to steady
state using determination of iterator-to iterator variations of a field variable normalized
by its domain. The normalized maximum root mean square (RMS) is defined as:

RM 5= 1 Znew ~ Zold| (10)
(Zmax _Zmin)

where ywas U, V, P, and 6. The value of RMS was checked in all the nodal locations

and convergence was announced when the upper values of RME were typically less
than 1x10™. The numerical model was validated with some of the previously published
standard problems. The comparison between the code results and Bahaidarah et al. [3] is
shown in a previous publication by Tahseen et al. [26].

CALCULATION PROCEDURE FOR THE GENERALIZED RADIAL BASIS
FUNCTIONS NEURAL NETWORKS

The artificial neural network is an information processing system that has certain
properties in a joint performance with biological neural networks. Artificial neural
networks are one of the most commonly used and developed models to investigate the
relationship between linear or non-linear input-output patterns. Moreover, they try to
circulate a training set and then approximate the test team. Performance is measured
using RBFN with predictable success. There is a lot of literature giving detailed ANN
types related with function approximation. Schematic diagrams for some artificial
intelligence models used in the analysis are shown in Figure 2. The neural networks use
the MATLAB program and all the tests have been implemented on a computer.
Activation of the error function used in this study is a function of the logistic sigmoid
and standard total of squared error function.
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The data was evaluated numerically in this study and normalized in order to get
the values. The formula used is as follows:

Actual value —Minimum

: — x (High — Low )+ Low [31]
Maximum — M inimum

where maximum is the maximum data value, minimum is the minimum data value, low
is the minimum normalized data value = 0.1, and high is the maximum normalized data
value = 0.9 [32].

Mean Nusselt P‘—. =
number Nu
PL \_ p -
v 223 X N N
Longitudinal pitch - AP
-
P, R,

Re W Pressue drop T S S R

Input layer Hidden layer Output layer
Reynolds number (4 hidden nodes)

() (b)

Figure 2. Schematic of system models: (a) input and output; (b) the radial basis
functions neural networks.

RESULTS AND DISCUSSION

Analysis of the numerical performances was conducted to verify the results from the
RBFN model. Sixty numerical simulation data were used to construct the RBFN model.
To improve the proposed model, twenty data (about 2/3x100%) were used for training
and ten data the remainder for testing performance (about 100/3%) were used to test the
RBFN model.

The relative error (RE) for variable B and the mean relative error [33] are
estimated by Eq. [34] [35]:

|BNum - BPred| 1N
RE% = x100,  MRE%=->"(RE%) [34]
BNum i=1

where Num, Pred and N stand for the numerical values, predicted values and the number
of numerical data, respectively.

The relative error results of the ANN model for average Nusselt number,
dimensionless pressure drop and average friction factor are presented in Figure 3 for the
training data. The maximum absolute relative error for the average Nusselt number,
dimensionless pressure drop and average friction factor are £7.109%, +8.104%, and
1+6.321%, respectively. The regressive model versus predicted (neural network) model
heat transfer coefficient in the flat tube banks with the radial basis function as well as
the dimensionless pressure drop and average friction factor are good agreement.
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The comparison of the numerical Nusselt number, dimensionless pressure drop
and average friction factor with those from various radial basis function methods of
training groups are presented in Figure 4. The result shows that the predicted values are
in good agreement with numerical values. It can be clearly seen from Figure 4(a) that
the predicted set values remained with a maximum relative error £7.11% of the
available data for average Nusselt number. In addition, the maximum relative error for
dimensionless pressure drop and average friction factor is +8.10% and £6.32%,
respectively. Figure 4(b) and (c) presents the performance of the RBFN model for the
training data used in the dimensionless pressure drop and average friction factor. On the
other hand, the mean relative error is 4.73%, 5.02% and 3.80%, for average Nusselt
number, dimensionless pressure drop and average friction factor, respectively.
However, the RBFN models appear to perform slightly better. This better performance
was shown by the higher coefficient of determination R* value 0.999 vs. 0.995.
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Figure 3. The relative error for training data using (a) average Nusselt number;
(b) dimensionless pressure drop; (c) average friction factor.
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The numerical values were compared with data obtained by the RBFN, as
illustrated in Figure 5 and Table 1. These figures contain the testing data for average
Nusselt number, dimensionless pressure drop and average friction factor. Note also that
the predicted values are very close to the numerical values with least error. With the
best RBFN configuration, the maximum relative errors were around +£7.04%, +7.79%,
and £5.12%, and mean absolute relative error was 5.01%, 4.38%, and 3.35%, for the
average Nusselt number, dimensionless pressure drop and average friction factor,
respectively. For the average Nusselt number, dimensionless pressure drop and average
friction factor, the predictions of the RBFN were in excellent agreement with the
numerical values coefficient of determination, R? value 0.914 vs. 0.999.
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Figure 4. Scatterplots of the training data for (a) average Nusselt number;
(b) dimensionless pressure drop; (c) average friction factor.
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Figure 5. Scatterplots of the testing data for (a) average Nusselt number;
(b) dimensionless pressure drop; (c) average friction factor.

Table 1. Comparison of average Nusselt number and dimensionless pressure drop of
ANN model for testing data.

Run no. 1 6 7 11 12 16 21 22 26 27

Average Nusselt number

Numerical 651 587 838 562 802 659 594 874 570 838

RBFN 6.32 545 799 589 768 637 630 922 610 801
%RE 3.03 7.04 462 505 424 332 597 548 696 4.45
%MRE 5.02

Dimensionless pressure drop

Numerical 17.82 941 232 697 171 1941 1010 267 732 193

RBFN 16.57 888 221 6.75 158 1837 987 261 7.03 1.90
%RE 699 563 454 314 779 539 227 218 404 188
%MRE 4.38

Average friction factor

Numerical 223 118 029 087 021 243 126 033 09 024

RBFN 218 113 028 083 021 237 122 032 0838 024
%RE 205 367 421 503 123 246 3.012 5124 4321 2342
%MRE 3.35
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CONCLUSIONS

In this article, the model developed used an RBFN to estimate the heat transfer
coefficient and pressure drop in a cross-flow over an in-line flat tube bank. The
following conclusions were obtained:

i)

i)

For the average Nusselt number, the maximum relative error for training is
+7.1% and the mean relative error is 4.73%. For the testing data the values are
+7.04% and 5.02%, respectively.
For the dimensionless pressure drop, the maximum relative error for training is
+8.10% and the mean relative error is 3.96%. For the testing data the values are
+7.79% and 4.38%, respectively.

iii) For the average friction factor, the maximum relative error for training is

16.21% and the mean relative error is 3.80%. For the testing data the values are
+5.12% and 3.35%, respectively.

Iv) The prediction of the average transfer coefficient, dimensionless pressure drop

v)

and average friction factor with the RBFN model is in good agreement with the
numerical result, and also has a smaller error.

Finally, this study clearly shows that the RBFN model is better for predicting the
heat transfer rate and pressure drop in an in-line flat tube bank with
comprehensive performance.
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NOMENCLATURES
Cp jﬂicéﬁ;)heat capacity of fluid, T temperature, °C
do longitudinal diameter of tube, m u,v  velocity components, m/s
dr transverse diameter of tube, m U,V dimensionless velocity
Dn hydraulic diameter of tube, m X,y  Cartesian coordinates, m
fc Average friction factor X, Y dimensionless Cartesian
coordinates

Gi, G2 contravariant velocity Greek symbols

components
J Jacobian of the transformation a, B,y coefficients of transformation
h average heat transfer coefficient, I diffusion coefficient

W/(m? K)
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k thermal conductivity of fluid, H dynamic viscosity, kg/(m s)
W/(m K)

NL number of tubes in deep row v kinematic viscosity, m?/s

Nu average Nusselt number 0 dimensionless temperature

p pressure, Pa P density, kg/m®

P. longitudinal distance, m n,¢ curvilinear coordinates

P, transverse distance, m ¢ general dependent variable

PL longitudinal pitch Subscripts

Pt transverse pitch in in

Pr Prandtl number L longitudinal

Re Reynolds number out out

S source term T transverse
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